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The thermal boundary layer on a non-isothermal 
surface with non-uniform free stream velocity 

By E. M. SPARROW 
N.A.C.A. Lewis Flight Propulsion Laboratory, Clueland, Ohio 

(Received 31 December 1957) 

SUMMARY 
A formally exact solution for the thermal boundary layer on 

a non-isothermal surface subjected to non-uniform free stream 
velocity is presented in the form of a series. It is demonstrated 
that the solution can be recast in terms of universal functions, 
which are independent of the wall temperature data of particular 
problems, and which depend only on a single parameter character- 
izing the variation of the free stream velocity. 

INTRODUCTION 
A new method for computing steady laminar incompressible boundary 

layer flows under conditions of non-uniform free stream velocity has recently 
been formulated by Gortler (1957). Provided that the free stream velocity 
can be written in terms of rather general series (or polynomials), he is able 
to give a formally exact solution for the boundary layer velocities. Further, 
he shows that the solution can be written in terms of universal functions, 
which depend only on a single parameter of the free stream flow. 

Our interest here is in the thermal boundary layer, and we consider 
the general situation of a non-isothermal surface with non-uniform free 
stream velocity. Gortler’s work will constitute a point of departure for 
the present study, and we will be able to make direct use of his results. 

For situations where variations in both the surface temperature and 
free &ream velocity are expressed as certain rather general series (with 
arbitrary coefficients), we are able to give a formally exact solution for the 
boundary layer temperature distribution. Our final results will involve 
a new set of universal functions. When these have been determined, the 
computation of the heat transfer and of other thermal quantities is a simple 
algebraic process. 

Exact solutions of the boundary layer energy equation for non-isothermal 
surfaces have previously been found only for free stream velocity variations 
in which U cc xp. These are the so-called similar solutions. The present 
formulation permits the consideration of much more general variations 
of free stream velocity. 

The development is carried out for steady laminar flow with constant 
fluid properties. Later, modifications for variable fluid properties will be 
noted. 

P.M. x 
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THE ENERGY EQUATION AND ITS TRANSFORMATION 

The differential equation expressing conservation of energy for steady 
laminar non-dissipative flow in a boundary layer is, in the usual notation 
(IX being the thermal diffusivity ), 

aT aT a2T 
ax ay ay2 ' 

u- + v -  = u- 

The boundary conditions for the temperature are assigned as 

q x ,  0 )  = T&), (2 a) 

T(x7y)  -+ T ,  as yd(Re)  + m7 (2 b) 
where T ,  is a constant. The terms describing the frictional heating and 
compression work have been omitted from the energy equation, thus 
restricting the problem to free stream velocities for which the adiabatic 
temperature rise is much smaller than the temperature difference between 
surface and stream. 

An approach to the solution of equation ( 1 )  cannot be made without a 
knowledge of the velocity components u and v. A consequence of the 
constancy of the fluid properties is that a complete solution for the velocity 
may be made without recourse to the temperature. This same desirable 
independence of the velocity is also found for a special group of variations 
in fluid properties to be noted later. So, in relation to equation (l), the 
velocity components u and v can be regarded as known a priori. Since our 
goal is to  attack as broad a problem as possible, we will select the most 
general velocity solutions presently available : namely, those of Gortler 
(1957). 

Following Gortler, we introduce new independent variables 5 and r )  

and a new dependent variable F by the relations 

F = 9/v1/ (209  (4) 
where + is the stream function. In  terms of these variables, the velocities u 
and v are 

u = UF,, ZI = - U(2[)-1/2[F+2[F,+ (8- l)?F,J, ( 5 )  

where the subscripts denote differentiation and 8, termed the principal 
function by Gortler, is given by 

For the temperature problem, we introduce a dimensionless variable 0 
by the definition 

T - T ,  - T-T, -- 
T,- T, - AT ' 
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Using the new independent and dependent variables, the energy 
equation ( 1 )  and the boundary conditions ( 2 )  may be written as 

@ ( f , O )  = 1 ,  @ ( f , q ) + O  as T-+ m, (9) 
where TL is an abbreviation for dT,/dx and Pr is the Prandtl number. 
All the given data concerning wall temperature and free stream velocity 
in any particular application appear explicitly only as the single coefficient 
vTk/UAT, which we will call the principal thermaI function and denote 
by A. It is interesting to note that h arises in the temperature problem in 
a manner similar to that in which /3 arises in the velocity problem. Both X 
and /3 will play important roles in the solution of the temperature problem. 

GORTLER'S SOLUTION FOR THE VELOCITY 

As a final prelude to the solution of equation (S), the required information 
for the velocity variable F must be given. We choose to study situations 
where the free stream velocity may be represented by the convergent 
series 

U(x)  = x m { s o + s l x m + 1 + ~ 2 ~ 2 ( m + 1 ) +  ...}, - 1  < m < m, so # 0. (10)  
Included here are two very interesting physical situations. First, the case 
m = 0 represents flows with a forward cuspidal point at x = 0 ;  and in 
particular, the flow over a flat plate is given by s1 .= s2 = ... = 0. Secondly, 
the case m = 1 represents flows about a symmetrical body* with a forward 
stagnation point. 

The form of the principal function 16, which corresponds to the free 
stream in equation (10)  is 

where 
equation (10) .  
with f is found from equations ( 3 )  and (10)  to be 

P = P O + P 1 f + P 2 f 2 + . . . ,  ( 1 1 )  
= 2m/(m+ 1 )  and the other 8, depend on the coefficients s ,  of 

Further, the relationship connecting the coordinate x 

Finally, the solution for F is given by Gortler as 

w, T )  = : Frt(T)fn, (13) 
n=O 

where in turn the F, are written as the following linear combinations of 
universal functions 

Fl = Plfl, 

F2 = Pl"fll+P2f2, 

F3 = P%+ P 1  P 2 f i 2  + P 3 f 3 ,  I (14)  
F4 = P:fllll+ P? P 2 f 1 1 2  + PI P 3 f 1 3  + % f 2 2  + P 4 f 4 ,  

. . . . . . . . . . . . . . . . .  
* As pointed out by Gortler, the restriction of symmetry can be removed by con- 

sideration of an alternate series for the free stream vebcity. 

x 2  
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The function Fo is determined from the Falkner-Skan differential equation 
containing Po as a parameter, while fi, fil, f2, etc., are found from the 
solution of linear inhomogeneous ordinary differential equations with 
homogeneous boundary conditions. The important fact is that the 
equations for the functions f do not contain pl, Bz, ... . Only Po enters 
indirectly through the appearance of Fo and its derivatives. So, for a 
selected Po, all the functions f as well as F, can be computed once and for 
all, without further reference to the additional special data (pl, p2, ...) of 
the particular problem. It  is in this sense that the functionsf are universal. 

SERIES SOLUTION OF THE ENERGY EQUATION 

We seek a solution of the energy equation (8) in the form of a series as 
follows : 

m 

@ = 2 4(,)5“. (15 1 
I 1  = 0 

We will assume that the principal thermal function X may aIso be expressed 
as a series: 

a 

A = cx,5“. (16) 
?Z = 0 

It will be shown in a later section that the dependence of the wall temperature 
on x which corresponds to this form for h is a rather general series expansion. 
Further, we will show how to determine the coefficients A,& for prescribed 
variations of wall temperature and of free stream velocity. 

Introducing the series (13), (15) and (16) into the energy equation 
and grouping terms having common powers off,  we find a system of ordinary 
differential equations for the 8, : 

(pr)-1 e; +Foe;, = 0, eo(o) = I, eo( 03) = 0,  (17) 
( p r ) - 1 8 ~ + F 0 8 : 1 - 2 n F ~ 8 ,  = +,, 8,(0) = O,(co) = 0, (TZ = 1, 2, ...), (18) 

where 

If we introduce the abbreviation 

M,(y) = (Pr)-1y”+Foy’-2nF,!,y (19) 

(20 a) 

(20 b) 

then the first few of equations (18) are 

Ml(81) = - 3F1 6; + 2h0 FI, 80, 

M2(82) = 2F; 8, - 3F1 8; - 5F2 8; + 2h0(F; 8, + FI, 8,) + 2h1 Fi BO, 

M,(8,) = 4F,’ 8, - 3F1 8; +2F; - 5F2 8; - 7F3 8; + 
+ 2Ao(FL 8, + F; + FS 8,)  + 2h,(F; 80 + Fi 8,) + 2X2 F i  80. 

(20 c) 
Equations (17) and (18) constitute a recursive system for computation of 
the 8,. All of equations (18) are linear. The boundary condition at the 
wall (q = 0) is satisfied by Bo alone, 
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It  is interesting to inspect the function 4,,, which contains the input 
data for the computation of O n .  It is seen that the particular data embodied 
in Po, ..., Pn, A,, ..., A?,-,, and the Prandtl number, must be specified 
before equation (18) can be solved for On. It is desirable to rephrase our 
problem in terms of functions which are independent of the explicit data 
of a particular problem. Such a course is followed below, where we will 
find universal functions which are completely independent of particular 
wall temperature conditions and which depend on the free stream velocity 
data only inasmuch as they depend on Po. 

The universal functions 
Our aim is to reduce the functions en to a linear combination of universal 

functions. The 
velocity functions appearing on the right-hand side may be replaced by 
universal velocity functions (14) to give 

Inspection of this equation suggests that O1 be written as 

First, we consider 0, and its differential equation (20 a). 

Ml(01) = - 81(3f1%) + Ao(2J’h 4d 

01 = B, + A0 Lo. (21) 
where B, and Lo are functions of 

M,(B,) = -3f10i ,  

which satisfy the differential equations 

(22) 1 B,(O) = B,( a) = 0, 

Ml(L0) = 2Fp0, L,(O) = Lo( co) = 0. 

Since Fa, f , ,  f, , ,  etc., depend only on Po, it follows from (22) that the same 
is true of B, and Lo. These functions do not depend upon particular 
surface temperature data. Thus, they are universal in the same sense as 
are the velocity functions. 

Next, consider 8, and its differential equation (20 b). When the right 
side is evaluated using the universal velocity functions (14) and equation (21) 
for 6,, we find that the factors fl:, P,, PIAo, A:, and A, appear. So we write 

I92 = B,, f 8 2  B, + Pl A0 z1.0 +A: Loo +A, L,. (23 ) 
The differential equations for Bll, B,, etc., are found from the usual method 
of comparing coefficients to be 

1 M,(%) = 2f;Bl-3.f1B;-5f11O1, 
M2(B2) = - 5f2 e;, 

M&O) = 2FiL0, I 

M,(L,)  = 2Fi do, J 

Bl,(0) = Bll( co) = zl,o(o) = zl,o( co) = ... = 0. 

M2(Z,,O) = 2f300 + Lo) - 3 h  L; + 2F; 4, ( 
I 

I 

where 

Again, we have universal functions in the sense noted above. 

of universal functions. 
In this fashion we can continue to recast each 0, as a linear combination 

Further listing of the universal functions and their 
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corresponding differential equations is given in Appendix A. It is not at 
all surprising that there are considerably more universal functions involved 
in our present velocity-temperature problem than there were for the velocity 
problem alone (compare equations (21), (23) and Appendix A with equation 

It is interesting to look at some of the properties of the universal functions. 
An inspection shows that the differential equation for any one of the 
functions B does not include any of the functions L and 2 as input data. 
The functions B may therefore be computed independently of the 
functions L and 2 (the converse is not true). Using the results of Sparrow 
(1958), it may be observed that the functions B are simply the universal 
functions for an isothermal wall subjected to the free stream velocity of 
equation (10). The functions L and 2 are associated with the deviations 
of the wall temperature from a uniform level. This splitting of the problem 
is, of course, associated with the linearity of the energy equation. 

The symbolism used for the universal functions follows a rational 
path first set down by Gortler. It permits an easy way of identifying any 
universal function with its coefficient as they appear in the linear combinations 
which compose the 0,. For example, B, is multiplied by pz, Lo, by A, 
and A,, B,, twice by ,!I1. 

(14)). 

Series representation of wall temperature variation 

assumed series representation for the principal thermal function A. 
had written 

We now investigate the wall temperature variation corresponding to the 
We 

For the velocity variation (lo), the relationship between 5 and x is given 
by (12). Using these facts, equation (16) may be rewritten as 

It is easily seen that the series for T ,  which satisfies equation (25) has the 
form 

m 

T,- Tm = 2 a , ~ n ( ~ + l )  (a0 z 0). (26) 
1 1 = 0  

For the two important special cases of flow with a forward cuspidal point 
(m = 0) and of flow around a symmetrical body with stagnation point (m = 1) 
equation (25) reduces to 

ffi 

T,- T,  = 2 a,x" (ao # 0, m = 0), (26 a) 

T , - T ,  = 2 a,x2, (ao # 0, m = 1). (26b) 

rL = 0 
m 

n=o 

For particular problems, the wall temperature and free stream velocity 
variations will usually be given, i.e. a, and s, will be specified. I t  is necessary 
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to determine the A, from these. The needed relationship may be evaluated 
from (25) and (26). The first two of these are written below; a more 
complete listing is given in Appendix B : 

u(m + 1)  A, = - 
so a0 

a,, 

It is clear that the determination of the A, from the given data is simply 
an arithmetic process. 

Heat transfer 

interest is the heat transfer. 
the wall is 

When the wall temperature is specified, the quantity of greatest practical 
From Fourier’s law, the local heat flux q at 

q = - ( k g )  u = o  . 
In terms of the variables of this analysis, the expression for 4 becomes 

where Re is the Reynolds number Ux/v ,  and Ol(0) is an abbreviation for 
[d@,,/dq],. The 0;,(0) may then be replaced by the universal functions in 
(21), (23) and Appendix A. 

Variable jluid properties 
Both Gortler’s analysis and the one given here apply, with no essential 

change, to fluids with variable properties under the following circumstances : 
(1) pp = constant, (2) pk = constant (K = thermal conductivity), 
(3) cp = constant. Then, using Howarth’s transformation 

U 

0 
y = I (Pip,) dY7 (30) 

and replacing y by Y in the equation (3) defining q, the entire formulation 
of the solution remains as before. 

CONCLUDING REMARKS 

We have given a formally exact solution for the temperature problem 
under rather general variations ofwall temperature and of free stream velocity. 
As a consequence of the introduction of universal functions, application of 
the results to particular situations becomes an arithmetical procedure. The 
practical utility of the development rests upon the availability of the universal 
functions. At present, only the functions B for Pr = 1 which correspond 
to the important cases of m = 0 and m = 1 are available (Sparrow 1958). 
Efforts are being made to find high speed, large memory computingequipment 
on which to evaluate a larger group of universal functions. 
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APPENDIX A. UNIVERSAL FUNCTIONS AND THEIR DIFFERENTIAL EQUATIONS 

The universal functions are introduced by the following equations : 

'1 = PlBl+h,LO, 

'2 = B; Bll + B z  B2 + 81 '0 Z1,O + g Loo + 4 Ll, 

'3 = 8: 411 + B1 B z  B1z + 83 B3 + s4 A0 Z1,O + B1 A: z1.00 + B1'1 21.1 + 
+ 82 A0 &,o + '2 L2 + '0 4 Lo1 + ': L"00, 

'4 = 8: Bllll + 8: 82 BllZ + 81 83 B13 + 8: BZZ + 84 B4 + 8: '0 zlll,O + 
+ 6: % z,1,00 + B," '1 Zll,l+ 8182 A0 Zl,, + 81 A2 2 1 , 2  + 
+ 81 h, A 1  Zl,Ol+ 81 4 z1,ooo + Bz '8 Z2,W + 82 A, G,l+ 
+ p3 23,0 + L3 + '0 '2 L02 + '1 + '2, Lll + LOOOO. 

Using the M,(y) operator defined by (19), the differential equations for the 
universal functions are as follows. 

Case n = 1. See (22). 

Case n = 2. See (24). 

Case n = 4. 



APPENDIX B. DETERMINATION OF hi? FOR GIVEN s, AND a,' 

Let 
A, = A, a,[ --3--In+' v(m + 1)  , 

then 

A, = 2 a , - a l k  + z), 
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